A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods
نویسندگان
چکیده
BACKGROUND Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. RESULTS We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. CONCLUSION This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.
منابع مشابه
طراحی و ساخت سیستم میکروفلوییدی و ارزیابی قابلیت آن جهت تولید اینترلوکین 2 توسط سلول های جورکت
Background and purpose: Microfluidic systems are microstructures that could be used to improve the conventional cell culture protocols used in laboratories. The aim of this research was to design and construct the microfluidic system and evaluating its ability to produce IL-2 by jurkat cells. Material and methods: At first, the sketch of microfluidic canals was designed by Corel draw and wa...
متن کاملGeneration of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.
This paper reports a microfluidic device capable of generating oxygen gradients for cell culture using spatially confined chemical reactions with minimal chemical consumption. The microfluidic cell culture device is constructed by single-layer polydimethylsiloxane (PDMS) microfluidic channels, in which the cells can be easily observed by microscopes. The device can control the oxygen gradients ...
متن کاملMacro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
Employing 3D-printed templates for macro-to-micro interfacing, a passively operated polydimethysiloxane (PDMS) microfluidic device was designed for time-resolved secretion sampling from primary murine islets and epidiymal white adipose tissue explants. Interfacing in similar devices is typically accomplished through manually punched or drilled fluidic reservoirs. We previously introduced the co...
متن کاملA neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide
The integration of microfluidic devices-which efficiently handle small liquid volumes-with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillar...
متن کاملA simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells.
This report shows methods to fabricate polydimethylsiloxane (PDMS) microfluidic systems for long-term (up to 10 day) cell culture. Undesired bubble accumulation in microfluidic channels abruptly changes the microenvironment of adherent cells and leads to the damage and death of cells. Existing bubble trapping approaches have drawbacks such as the need to pause fluid flow, requirement for extern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BMC Biotechnology
دوره 7 شماره
صفحات -
تاریخ انتشار 2007